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Abstraet--A mathematical model is developed to investigate the continuous-flow sterilization of solid- 
liquid food mixtures by electroconductive heating. Heating rates of solid and liquid phases depend on the 
electrical conductivities and volume fractions of the respective phases. A thermal inversion phenomenon 
is predicted wherein the low electrical conductivity phase which initially heats slowest, begins to heat faster 
than the phase of higher electrical conductivity. Effects of fluid-solid heat transfer coefficient depends on 
differences in electrical conductivities of phases. When electrical conductivities are sufficiently different, 
poor interphase heat transfer has been shown to increase overall heating rates. © 1998 Elsevier Science 

Ltd. All rights reserved. 

INTRODUCTION 

Recent developments in electrode materials have 
made continuous flow electroeonductive, or ohmic, 
heating a feasible alternative for sterilization of bio- 
materials. This technology has found applications in 
heating fluids with fouling tendencies, and also in 
treating solid-liquid mixtures to sterility. The general 
objective of sterilization is the elimination of all 
microbial life :Forms: however this is not always 
realistic for biomaterials which also undergo severe 
degradation with exposure to sterilization tem- 
peratures (above 121°C). Thus, a more realistic goal 
is commercial sterility, or the destruction of micro- 
organisms of public health significance. 

The accomplishment of commercial sterility 
requires that all parts of the solid-liquid mixture be 
heated to a sufficient temperature for sufficient time 
for the purpose. If  the coldest location exists within 
a solid piece, the difficulty in monitoring cold-spot 
temperatures within continuously flowing solids 
necessitates mathematical model development. We 
focus here on solids that are of significant size, such 
that the ratio of solid dimensions (d) to heater tube 
diameter ~> 0.1. 
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Very few investigators have developed math- 
ematical and experimental models for ohmic heating 
of solid-liquid mixtures. De Alwis and Fryer [1] have 
presented a finite element analysis of heat transfer in 
static heaters, in situations involving negligible con- 
vection. Sastry and Palaniappan [2, 3] studied the 
influence of particle orientation during the ohmic 
heating of liquid-particle mixtures in static heaters. 
These models were subjected to experimental veri- 
fication with good agreement between model and 
experimental results. 

For  continuous heaters, Sastry [4] developed a 
model for plug flows which predicts the fluid and solid 
temperatures within a continuous heater. The plug 
flow assumption results in a one-dimensional for- 
mulation for the electric field and fluid temperature 
problem, although the treatment of solids conduction 
was fully three-dimensional. Models developed by De 
Alwis and Fryer [1], and Halden et al. [5] apply only 
to a single particle, rather than multiple particles, in a 
fluid. Furthermore these models are not three-dimen- 
sional. 

In the present study, we present a mathematical 
model that predicts the temperature distribution in a 
solid-liquid mixture. We consider both axial and rad- 
ial variations of the electric field and the fluid tem- 
perature in a continuous ohmic heater. A fully three- 
dimensional finite-element model is used to compute 
the temperature within solid particles. In addition, the 
effect of various physical parameters on temperature 
distributions are studied. 
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NOMENCLATURE 

A area [m:] 
Cp specific heat [kJ (kg °C)-1] 
d particle diameter [m] 
hrp fluid-solid heat transfer coefficient 

[W (m 2 °C)- 1] 

j flow behavior index 
k thermal conductivity [W (m °C)-1] 
K consistency coefficient [Pas 4] 
L length of heater tube [m] 
m temperature coefficient [°C-i] 
k:/ volumetric flow rate [m s s -j] 
n number 
N number of nodal points 
N u  Nusselt number (hfpd/kf) 
Qo interphase heat transfer 

lW m -2] 
r radial coordinate [m] 
R radius of heater tube [m] 
t time [s] 
T temperature [°C] 

energy generation [W m -3] 
U overall heat transfer coefficient 

[W (m 2 °C)-1] 

V 
Z 

voltage [V] 
axial coordinate [m]. 

Greek symbols 
ct thermal diffusivity [m S -2] 
fl area fraction function 
& Kronecker delta 
v velocity profile [m s -1] 
vf volume fraction 
p density [kg m -3] 
a electrical conductivity [S m-1 

(Siemens m-l)]  
~b basis function. 

Subscripts 
a air 
eft effective 
f fluid 
i, j node indices 
p solid piece 
s surface 
w wall 
0 initial. 

PHYSICAL MODEL 

A homogeneous solid-liquid mixture is heated 
ohmically as it flows through a tube surrounded by 
air at constant temperature. Although a great variety 
of designs exist, we consider here a typical embodi- 
ment of a commercial heater wherein the electric field 
is applied longitudinally along the flow path (Fig. 1). 
Electric heat is generated by imposing constant but 
different voltages at various points along the tube, 
thus creating a longitudinal voltage field. The tube is 
assumed to be non-conductive electrically; hence, 
there is no voltage flux at the tube wall. Furthermore, 
it is assumed that the solids are spheres of uniform 
shape and size, and that the mass transfer between 
phases is negligible. 

MATHEMATICAL FORMULATION 

The current continuity equation (Hayt [6]) governs 
the electric field, while the conservative equations of 
continuity, momentum and energy govern the flow 
and thermal fields. 

The steady-state form of the current continuity 
equation that governs the voltage distribution is given 
by: 

V.(~rVr3 = 0. (l)  

In general, for biomaterials undergoing ohmic heat- 

ing, a is a function of temperature, and a linear 
relation is suitable (Palaniappan and Sastry [7]) : 

a = a 0 ( l + m T )  (2) 

where a0 is the reference value and m is the tem- 
perature coefficient. 

The boundary conditions are : 

V =  VI a t z = 0  (3) 

V =  V2 a t z = L  (4) 

and on the axis (r = 0) and at the outer boundaries 
(r = R): 

~V 
Or 0. (5) 

If  orientation effects of solid particles are negligible 
(i.e. the mixture is isotropic), an effective electrical 
conductivity, tre~, may he defined for the mixture using 
the Kopelman [8] model (see Sastry and Palaniappan 
[3]): 

~ g l  - C )  
O'ef t -- (6) 

l - C ( 1  - r ~ ? )  
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Fig. 1. Heater tube. 

-kpVTp'n I~ = h ~ ( G , -  Tf) l 

The fluid temperature is obtained from : 

(11) 

aT~ 
prco,~zV~rT; z = #(vfOv" (krVTr) 

- npAphfp(Tf-- Tin) +/ifvff 

where 

(12) 

dE 1 a 0 2 
v~ = - -  + r - -  (13)  

c~r 2 3r + c~z: 

uf is the energy generation given by : 

ar = [VVlEaor(1 +mrTf) (14) 

and fl(v~) represents the fraction of conductive heat 
transfer through the mixture in the fluid phase. 
Although the exact form of fl(v~) is not known, an 
expression may be derived based on the fact that con- 
duction occurs across an elemental surface. Hence 
fl(v~) should represent the area fraction of the fluid 
phase. Based on the Kopelman model, the area frac- 
tion of fluid is given by : 

#(vrf) = 1 - (1 - vrr) :j~ (15)  

which is simplified by binomial expansion to obtain : 

#(vff) = 3vrf+2 t~(v~). (16) 

The above relation is derived by assuming the com- 
bined phases to consist of an equivalent circuit with a 
continuous phase resistance in series with two parallel 
resistances, each representing the continuous and dis- 
persed (solid) phases. Note that the steady-state 
assumption is valid if variations in the phase proper- 
ties are small, which is the assumption here. 

Energy 
The temperature distribution in the solid spherical 

particles is governed by : 

eT~ 
Pr, C . ,  ~ = V" ( k , V  Tp) + ap (8) 

We should note here that the particular form of this 
expression did not have a measurable effect on the 
results as the conduction term is very small relative to 
other terms in the fluid equation. The axial conduction 
term (~2/~z2) in equation (12) is small relative to the 
radial conduction term by virtue of a large Peclet 
number, (_9(104), and is neglected. 

The appropriate boundary conditions are as fol- 
lows : 

Tf=Ti ,  a t z = 0 .  (17) 

The balance between convective and conductive heat 
transfer on the outer surface of the tube is given by : 

where the energy generation term, up, is defined by : 

ap = IVVlEaop(1 +mpTp) (9) 

where the expression a0p(1 +mpTp) represents the lin- 
ear relation between electrical conductivity and tem- 
perature that is exhibited by many biomaterials. 

Equation (81) is subject to the following initial and 
boundary conditions : 

To=TI, a t t = 0  (10) 

and at the outer surface : 

-krVTenlw= U(Tf- Ta)Lw. (18) 

Combining equations (18) and (12) provides the outer 
boundary condition at (r = R) : 

pfCpfT~vfr~ OZ Tf = fl(vfO(k,-~-r2-Ur(Tf-T,)) 

- noAphrp( T f -  Tp~) + arVfr (19) 

on the axis (r = 0), applying the fluid equation (12) in 
the limit as r ~ 0, we obtain : 
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~Tf ~2Tr 
pfCprg~vff ~z  = 2fl(vff)kf ~r2 - npAphrp (Tf - To, ) 4-/~fvff. 

(20) 

Momentum 
A complete description of the flow field requires 

solutions of mass and momentum conservation equa- 
tions that govern the fluid motion, and linear and 
angular momentum equations for solid pieces. In 
addition, the particle-fluid and particle-particle inter- 
actions must be accounted for. Since the solids in this 
study are not fine, but of significant dimensions, the 
use of fine-particle models are not useful here. Clearly, 
this is a formidable challenge to numerical simulation. 
We note that a number of multiparticle simulation 
approaches exist; however, these typically treat the 
solid particles as being fine, in effect making these 
point sources of momentum in the fluid equation. 
Other approaches, dealing with large particles, con- 
sider Stokes flow far from boundaries. Such 
approaches cannot easily be applied here, since the 
solid pieces are large and confined close to boundaries. 

In most practical situations, liquids are of 
sufficiently high viscosity (due to the presence of large 
macromolecules) to ensure entrainment of solids, and 
prevent phase separation. This is particularly impor- 
tant in ensuring that end product compositions are 
constant. This essentially ensures that the same aver- 
age velocities for both phases, and allows us to use a 
homogeneous flow approach. We note in passing that 
related studies in our laboratory using Particle Track- 
ing Velocimetry (PTV, Zitoun [9]) have revealed that 
homogeneous flows occur on average; however, the 
fluid interstitial velocity profiles are in fact, highly 
complex. Indeed, significant local interphase relative 
velocities may exist, even though the velocities on 
average are essentially equal. For  the present, treating 
the mixture as a composite non-Newtonian fluid, we 
express the velocity profile at each radial node in the 
heater tube as an average value of a fully-developed 
flow : 

/ 3 j +  1\ F f r y  + 
(21) 

NUMERICAL PROCEDURE 

Discretization 
Equations (8), (12), (1), and their respective initial 

and boundary conditions represent a set of coupled 
equations that are solved iteratively. 

We use second-order finite-difference schemes to 
discretize equations (12) and (1), and their cor- 
responding boundary conditions; the Crank-Nich- 
olson scheme is utilized for equation (12), and a cen- 
tral-difference formula is used for equation (1). 
Second-order forward and backward difference 
schemes are used for inner and outer boundaries, 

respectively. Thus, equation (12) is reduced to the 
following algebraic equation : 

TT+-llI-2Az~xf+!ArAz~xf 1 

1 
Ar 2 Az~fh x + T'] +1 4ArZ¢zvfr+4Azctf+2 

2 Ar 2 AzGtf 2 ] 
- kf (IVVl)aoCnfv~J 

= T7 [4 Ar29¢vff - 4 Az~tf- 2 Ar E Aza~x 

2 Ar 2 AZCtf ..... 2x ] 
-[- kf t [¥v [  )°°fmfvffd 

. 1 
+ T,+ ~ [2 Az~f+ r Ar Azctf] 

+ (r;g' + r;012 zXr 

4 Ar 2 Azer 2 
+ kr [IV l/] )~ofVfr] (22) 

where 

ivv] ~ = (IVV19Y+' +(IVVl~)7 
2 

kf 
~f = p f fp f  

h~ - npAphfp 
kr 

The algebraic equation (22) along with the inner 
and outer boundary conditions is solved by matrix 
inversion. The explicit finite-difference form of equa- 
tion (1), which is obtained using a central-difference 
scheme, is solved by the Gauss-Seidel iteration. An 
approximate solution to equation (8) is constructed 
using Galerkin's method and the Crank-Nicholson 
scheme. Utilizing Galerkin three-dimensional finite- 
element method in space and Crank-Nicholson finite- 
difference scheme in time, equation (8) and its bound- 
ary conditions are reduced to a set of algebraic equa- 
tions : 

~ [ c ~ + A t - 1  + , =  [Co._At  

At it-hi +~- [F~  +F~J for j =  1,2 . . . . .  N (23) 

where, for surface nodes : 
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K,j = Iv (vo,. vo,) dv 

IV~!a°P mo f ~#jdV+ ~p I ¢,~jds 

Fj-- kp 3~dpjdv+ ~p Tf(t) f~ q~'ds 

and for internal nodes : 

co = ¼ fvo, jdv 

Kij=~(V~pi'V~pj)dv-lVl/]k-~tr°PmPyv~i~pjdv 

In the foregoing expressions, the ~b~s, are the basic 
(24) functions, which are first-degree polynomials chosen 

in such a way that (oi(xj, yj, zj) = 6~. 
The choice of computational methods was dictated 

partly by the problem, and partly by available intern- 
ally written codes. The finite difference approach was 
preferred for the tube geometry for two reasons : bet- 

(25) ter ability than finite elements to handle the parabolic 
thermal problem, and the regular geometry, which 
was not likely to change significantly. Finite elements 

(26) were chosen for the solid heat transfer problem 
because of the easier transition to complex geometries 
(likely with food particles) and the availability of our 
own code for this purpose. 

(27) 

Mesh for tube geometry 
The finite-difference mesh for the heater tube con- 

(28) taining the solid-liquid mixture is as represented in 
Fig. 2(a). This mesh is used for both the voltage and 
fluid temperature equations. Mesh refinement is lim- 

(29) ited by solids size. Refinement to sub-particle sizes 

(NR,I) (NR.NZ) 

(1,1) (1,NZ) 

z 

Fig. 2. (a) Finite-difference mesh for heater tube. (b) Finite-element mesh for solid particles. 
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will invalidate the original working equations, a 
common drawback of such approaches. Approaches 
such as ensemble-averaging may be used for multi- 
phase flows (Lahey and Drew [10]). In this study, we 
used meshes that would accommodate at least one 
complete solid particle within an element. 

Mesh for solids geometry 
The finite-element mesh constructed using SDRC's 

I-DEAS Master series. The domain, in our case a 
segment of a sphere bounded by three symmetrical 
surfaces, namely the coordinate axis, and the outer 
surface, is partitioned into 173 tetrahedral elements 
with a total of 63 nodal points. The mesh is depicted 
in Fig. 2(b). Preliminary simulations revealed that 
temperature gradients within individual particles were 
not large enough to necessitate the use of non-uniform 
meshes. 

Iteration process 
Since the governing equations are coupled, suitably 

converged solutions are obtained iteratively. We 
define all physical properties, construct the nodal net- 
work, and specify initial profiles for fluid and particle 
temperatures. The iteration proceeds as follows : first, 
the voltage distribution is computed, and then the 
fluid and particle temperatures are obtained across 
the tube radius simultaneously. At each axial location 
the fluid temperature is computed by matrix inversion 
and the temperature distribution in particles are 
obtained at each node. An average particle-surface 
temperature is then computed to represent the particle 
temperature at each node. This process is repeated 
until convergence is attained. The convergence criteria 
requires that the maximum difference between fluid 
temperatures and also the particle temperatures in two 
successive steps be less than the convergence tolerance. 

It is important to note that the time steps are chosen 
such that successive time steps coincide with the axial 
location in the heater tube. In other words, the time 
step depends on the number of axial nodes, the dimen- 
sions of the heater tube, and the volume flow rate : 

Or R2)L 
At - 3;I(Nz- 1~" (30) 

We performed a parametric study to determine the 
effects of various physical parameters (e.g. fluid-solid 
convective heat transfer coefficient, solid volume frac- 
tion, particle size, electrical conductivities of phases) 
on the temperature distribution in the fluid and solid 
particles. Table 1 contains the values of system par- 
ameters and physical properties of fluid and solid par- 
ticles used in our simulations. 

All computations were carried out on a Cray Y- 
MP supercomputer. The total computation time for a 
converged solution varied from a minimum of 285 s 
to a maximum of 600 s depending on the physical 
properties and system parameters. For example, 
higher values of tr and hfp required more iterations to 
attain convergence. A total of 1200 nodal points, 200 
in the axial and six in the radial direction, covered the 
tube. The convergence tolerance was set at 0.1 e -  4°C. 

RESULTS AND DISCUSSION 

The effect of the finite-element mesh refinement is 
depicted in Fig. 3. Increasing the number of nodes 
and elements, uniformly, from 30 and 55, respectively, 
to 63 and 173 changed the particle temperature by 
1%. A further increase to 96 nodes and 288 elements 
produced no discernible change in the particle tem- 
perature. The change in the fluid temperature was 
smaller than that in particle temperature for all cases. 

Table 1. (a) System parameter values. (b) Physical properties 

Parameter Value 

Length of tube 5.0 m 
Tube diameter 0.10 m 
V~ 0.1e+05 V 
V2 0.25e+04 V 
Volumetric flow rate 0.4e - 03 m 3 s- 
Particle size 0.004 m 
Solid volume fraction 0.50-0.80 
Initial temperature 25°C 
Overall heat transfer coefficient 20 W m -2 C- 
Fluid-particle heat transfer coefficient 100-300 W m-2 C- 
Flow behavior index 0.30 

Property Solid Fluid 

Electrical conductivity (reference value at 0°C) 0.14).2 S m-~ 0.24).6 S m- 
Temperature coefficient of electrical conductivity 0.25°C ~ 0.02°C -~ 
Specific heat 3.57 kJ kg-l °C-~ 3.76 kJ kg-1 °C-J 
Thermal conductivity 0.55 W m- ~ °C- ~ 0.5 W m- J °C- 
Density 1080 kg m - 3  1000 kg m -3 
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Fig. 3. Particle temperature distribution for various mesh 
sizes (a0p = 0.1, tr0f = 0.59, vfs = 0.5, hrp = 100, mf = 0.02, 
mp = 0.25), © (55 elements), - -  (173 elements), +(288 

elements). 
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Fig. 5. Electric field distribution in the mixture (a0p = 0.1, 
tr0r = 0.59, vf~ = 0.5, hrp = 100, mr = 0.02, mp = 0.25). 

The fluid and solid cold-spot temperatures, at the 
center line of the iheater tube, are plotted as functions 
of axial location in Fig. 4. It is observed that the 
particles lag the fluid thermally nearly midway 
through the heater. Because of a much larger electrical 
conductivity, the fluid heats at a faster rate than do 
the particles resulting in a higher fluid temperature. 
However, as the temperature rises, the electrical con- 
ductivity of the particles increases rapidly due to a 
larger temperature coefficient value (this is typical of  
biomaterials). Consequently, the particles begin to 
lead the fluid thermally. 

3.5 

3 

2.5 

o 

2 

1.5 / .  

] i i i i 
0 0.2 0.4 0.6 0.8 

z/L 

Fig. 4. Temperature distribution in the heater tube (a0p = 0.1, 
tr0f = 0.59, vfs = 0.5, hrp = 100, mf = 0.02, mp = 0.25),-- par- 

ticle, ... fluid. 

The electric field distribution is shown in Fig. 5 for 
various radial locations. The upstream locations show 
large field strengths, since the mixture is coldest and 
least electrically conductive at these locations. As the 
temperature rises, the electrical conductivities 
increase, and the field-strength decreases. 

Radial variation of heating rates in solid particles 
and fluid are illustrated in Figs. 6(a) and (b), respec- 
tively. As expected the heating rate increases in the 
direction of the outer wall of  the heater where the 
residence time reaches its maximum. 

Temperature distributions for different values of 
heat transfer coefficient, hfp, are shown in Figs. 7(a) 
and (b). Two distinct patterns may be observed. When 
the electrical conductivities of  the two phases do not  
differ by large amounts  (Fig. 7(a)), in mixtures with 
larger values of hfp, heat exchange between solid and 
liquid phases is more significant. As a result the par- 
ticle and fluid temperature differences are reduced as 
hfp increases. Figure 7(b), however, illustrates a situ- 
ation where the electrical conductivities of the two 
phases are widely different. In  such a situation, it is 
possible for one phase to heat sufficiently rapidly as 
to create a large temperature difference between it and 
the other phase. Under  such conditions, the low hfp 
mixture develops an increased interphase heat flux 
(Fig. 8) which causes the entire mixture to heat more 
rapidly than the mixture with a higher heat transfer 
coefficient. This observation has been experimentally 
verified in our laboratory (Khalaf  and Sastry [11]). 

It is noted that experimental verification for flowing 
conditions is not  simple, since the measurement of 
flowing solids' temperatures is not  easily possible. 
However, monitoring of fluid temperature and power 
are possible, and provide indications of overall mix- 
ture heating. Data from Khalaf  and Sastry [11] show- 
ing the effect of  heat transfer coefficient (varied by 
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Fig .  6. T e m p e r a t u r e  d i s t r i b u t i o n  fo r  v a r i o u s  r a d i a l  l o c a t i o n s  
(O'0p = 0.1,  aof = 0 .59 ,  Vfs = 0.5,  hfp = 100, mf  = 0.02,  
mp= 0.25), - -  r = 0.0, - - - r = R / 2 ,  " "  r = R .  (a) Particle. 

(b) Fluid. 
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Fig.  7. T e m p e r a t u r e  d i s t r i b u t i o n  fo r  v a r i o u s  h~p v a l u e s  
( a o p = 0 . 1 ,  a o f = 0 . 5 9 ,  v f s = 0 . 5 ) ,  p a r t i c l e :  - -  h f p =  100, 
- - - hfp = 300, f lu id :  . . .  hep = 100, - . . . .  hfp = 300, (a)  rn~ = 

0.02,  m~ = 0.25,  (b)  mf  = 0.1, mp = 0.1. 

changing viscosity) are shown in Table 2. While the 
total amounts of heating are small (dictated by large 
electrode gaps), the increased heating rate of the 
higher viscosity solution is evident. Space does not 
permit the presentation of verification of thermal 
inversion (Sastry and Palaniappan [3]); the reader 
may refer to that paper for details. 

The effect of the solid volume fraction, vrs, is 
depicted in Fig. 9(a); an upward shift is observed in 
both the fluid and particle temperatures, at higher 
solid concentrations. The effective electrical con- 
ductivity of the mixture is increased with increasing 
solid concentration and rising temperatures resulting 
in higher heating rates. It is also noted that the thermal 
inversion point (the point where the solids tem- 
perature exceeds that of the fluid) occurs at a lower 

temperature when the volume fraction increases. This 
appears to be due to the larger fraction of total elec- 
trical energy intercepted by the dispersed phase as the 
volume fraction increases. 

Results presented in Fig. 9(b) show the influence of 
particle size on the heating rates. As particle size is 
reduced, the number of particles per unit volume of 
the mixture, and consequently, the total solid surface 
area is increased. This increases the interphase con- 
vective heat exchange which causes the particle and 
fluid temperatures to approach each other. In 
addition, a small increase is observed in both the par- 
ticle and fluid temperatures. 

It must be noted that the model presented here is 
subject to simplifying assumptions regarding the fluid 
velocity profiles, as well as the structure of the mixture 
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Fig. 8. Interphase heat exchange for various hrp values 
(cr0p=0.1, tr0f=0.59, vf~=0.5, mr=0.1,  mp=0.1),  - -  

hfp = 100, - - - hrp = 300. 

used in de te rmining  the effective electrical conduc-  
tivity. In  a real flowing sol id-l iquid mixtures,  the solid 
areal porosi ty  (area fract ion exposed to the current)  
is a complex, s tochast ic  funct ion,  and  the fluid velocity 
is extremely complex. These issues affect the tem- 
pera ture  d is t r ibut ion  funct ion,  bu t  are no t  presently 
t ractable  ei ther clue to lack of  in format ion  or com- 
pu ta t iona l  l imitat ions relative to the flow structure.  
These points  are the subjects of  ongoing model  
refinements.  

C O N C L U S I O N S  

The ohmic heat ing of  sol id-l iquid mixtures  shows 
potent ia l  for heisting solid materials  faster  t han  the 
su r rounding  liquid medium.  Heat ing  rates depend on  
the electrical conductivi t ies  of  the two phases. Fo r  
typical values of  electrical conduct ivi ty  o f  liquid and  
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Fig. 9. Temperature distribution for various vfs values and 
particle sizes (trOD = 0.1, a0f= 0,59, hfp= 100, mr=0.02,  
mp = 0.25), (a) particle : - -  vf~ = 0.5, - - - vfs = 0.8, fluid : ..- 
vfs = 0.5, - . . . .  vfs = 0.8, (b) particle : - -  d/L = 0.0016, - - - 
d/L = 0.0004, fluid : .-. d/L = 0.0016 (vf~ = 0.8), - . . . .  

d/L = 0.0004 (vr~ = 0.8). 

Table 2. Compari~;on of continuous flow heating of 60% 
potato solids in sodium carboxymethyl cellulose solutions of 
equal electrical conductivity (data from Khalaf and Sastry 

[111) 

Fluid carrier 

Parameter K = 0.179 Pa s °'72 K = 0.87 Pa s °6 

o-0f (S m-i)  0.57 0.59 
mr (°C-t) 0.04 0.039 
trop (S m -t)  0.1 0.1 
m~, (°C -1) 0.163 0.163 
M (m ~ s- i) 1.7 1.7 
Voltage (V) 697 697 
Electrode gap (m) 0.72 0.72 
Power dissipation ~ / )  3187 3497 
Temperature rise CC) 3.8 6.8 

solid phases, a the rmal  inversion po in t  occurs, where 
the heat ing rate of  the solid phase  exceeds tha t  of  the 
liquid. The  the rmal  inversion po in t  has  been found  to 
depend on  solids volume fraction. Radia l  locat ion 
affects heat ing because of  the low residence times 
associated with central  tube locations.  The  fluid-solid 
heat  t ransfer  coefficient shows two dist inct  types of  
behavior .  W h e n  electrical conductivi t ies are no t  
widely apart ,  the effect of  increased hea t  t ransfer  
coefficient is simply one of  reducing in terphase  tem- 
pera ture  difference. However,  when  phase  electrical 
conductivi t ies  differ markedly,  one phase  may  heat  
significantly faster than  another ,  and  the in terphase  
energy flux is dictated more  by tempera ture  difference 
t han  heat  t ransfer  coefficient. Part icle size has  a small 
effect on  overall  heat  transfer.  



2220 S. ORANGI et al. 

Acknowledgements--Salaries and research support provided 
in part by OARDC, The Ohio State University, and USDA- 
NRICGP Grant No. 93-37500-9255, and computational 
resources provided by the Ohio Supercomputer Center. Ref- 
erences to commercial products and trade names are made 
with the understanding that no endorsement or dis- 
crimination by The Ohio State University is implied. 

REFERENCES 

1. De Alwis, A. A. P. and Fryer, P. J., A finite element 
analysis of heat generation and transfer during ohmic 
heating of food. Chem. Eng. Sci., 1990, 45(6), 1547-1559. 

2. Sastry, S. K. and Palaniappan, S., Influence of particle 
orientation on the effective electrical resistance and 
ohmic heating rate of a liquid-particle mixture. J. Food 
Proc. Eng., 1992a, 15, 213-227, 

3. Sastry, S. K. and Palaniappan, S., Mathematical mode- 
ling and experimental studies on ohmic heating of liquid- 
particle mixtures in a static heater. J. Food Proc. Eng., 
1992b, 15, 213-227. 

4. Sastry, S. K., A model for heating of liquid-particle 

mixtures in a continuous flow ohmic heater. J. Food 
Proc. Eng., 1992, 15, 263-278. 

5. Halden, K., De Alwis, A. A. P. and Fryer, P. J., Changes 
in the electrical conductivities of foods during ohmic 
heating. Int. J. Food Sci. Tech., 1990, 25, 9-25. 

6. Hayt, W. H., Engineerin9 Electromagnetics, 5th edn. 
McGraw-Hill Book Co., New York, 1988. 

7. Palaniappan, S. and Sastry, S. K., Electrical conductivity 
of selected solid foods during ohmic heating. J. Food 
Proc. Eng., 1991, 14, 221-236. 

8. Kopelman, I. J., Transient heat transfer and thermal 
properties in food systems. Ph.D. thesis, Michigan State 
University, East Lansing, MI, 1966. 

9. Zitoun, K. B., Continuous flow of solid-liquid mixtures 
during ohmic heating: fluid interstitial velocities, solid 
area fraction, orientation and rotation. Ph.D. thesis, The 
Ohio State University, Columbus, OH, 1996. 

10. Lahey, Jr., R. T. and Drew, D. A., The three dimensional 
time- and volume-averaged conservation equations of 
two-phase flow. Advances in Nucl. Sci. and Technol., 
1988, 20, 1-69. 

11. Khalaf, W. G. and Sastry, S. K., Effect of fluid viscosity 
on the ohmic heating rate of solid-liquid mixtures. J. 
Food Engineering, 1996, 27, 145-158. 


